Double Dissociation Between Perception and Action in Children

Erez Freud¹, Nahal Binur², Ashish Srikanth¹, Emily Davidson¹, Tzvi Ganel³ and Bat-Sheva Hadad²

1. Department of Psychology and the Centre for Vision Research, York University, Toronto, Canada
2. Department of Special Education, University of Haifa, Haifa, Israel
3. Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel

Acknowledgements: This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) (EF), by the Vision Science to Applications (VISTA) program funded by the Canada First Research Excellence Fund (CFREF, 2016–2023) (EF) and by the Israel Science Foundation (ISF) grant number 967/14 (BH).

Running title: Perception-action dissociation in children
Abstract

Previous research has demonstrated a functional dissociation between vision-for-perception and vision-for-action. However, the developmental trajectory of this functional dissociation is not well understood. We directly compared the sensitivity of grasping and perceptual estimations within the same experimental design to the real and to illusory size of objects positioned in the Ponzo illusion display. Two different-sized objects were placed such that the differences between their real sizes and their perceived sizes were pitted against each other. Children aged five to eight years and adults made perceptual size discriminations and then grasped (action) or estimated (perception) one of the objects based on its perceived size. Consistent with previous results, for the action task, grasping apertures of adults were scaled with the physical differences in the objects’ sizes, even in trials in which their overt perceptual decisions were deceived by the illusion. In contrast, perceptual estimations were robustly modulated by the illusion. Interestingly, children outperformed adults in their perceptual discriminations, but exhibited adult-like behavior in grasping and in perceptual estimations of the objects, demonstrating a dissociation between perception and action. These results suggest that although the two visual functions are not operating at fully mature levels during childhood, some key mechanisms that support dissociation are already in place.
Introduction

According to the two visual pathways account, the neuronal mechanisms mediating the perception of objects are considered to be dissociable from those mediating the immediate control of actions directed at those objects (Goodale & Milner, 1992). The ventral “what” pathway, which projects from V1 through the ventral temporal and occipital structures to the anterior temporal cortex, provides detailed representations of the world required for cognitive operations such as recognition and identification. In contrast, the dorsal “how” pathway, which extends from V1 to the posterior parietal structures, promotes visuomotor control.

Although representations mediating these functions may overlap and interact (for a review, see Freud et al., 2016), research has documented several instances of a functional dissociation between the two visual pathways, suggesting that action and perception rely on qualitatively different sets of representations. Initial support for this model was based on neuropsychological cases, such as patient DF, who suffered from a remarkable impairment in object recognition, but nevertheless exhibited preserved visuomotor control of same objects (Goodale et al., 1991). Later studies demonstrated a corresponding pattern of dissociation in healthy observers. For example, psychophysical evidence shows that when observers are asked to grasp an object, their grasping apertures violate Weber’s law, but when they are asked to perceptually estimate the size of the same objects, their manual estimations obey to this fundamental law of psychophysics (Ganel, Chajut, et al., 2008).

Understandings of the functional dissociation of action and perception was greatly informed by studies examining the effect of visual illusions on these two functions. While some studies have found that grasping movements escape the influence of visual illusion (Aglioti et al., 1995; Ganel & Goodale, 2003; Haffenden & Goodale, 1998), others indicate that grasping, just as perception, is sensitive to visual illusions (Franz et al., 2000, 2001). This disagreement on whether illusions affect the control of grasping is largely associated with a specific size-contrast illusion, the Ebbinghaus illusion (Kopiske et al., 2016). Findings on other illusions, such as the Ponzo illusion (Ganel,
Tanzer, et al., 2008; Gonzalez et al., 2008; Whitwell et al., 2016) and the diagonal illusion (Smeets et al., 2020), consistently show that while perceptual estimations are heavily influenced by the illusions, grasping trajectories can escape illusory effects.

For example, a double dissociation between action and perception was observed in a study that pitted real and illusory size against each other in the context of the Ponzo illusion (Ganel, Tanzer, et al., 2008). In this research, that employed a similar design to the one used in the current study, participants completed a forced-choice perceptual judgment that was followed by a grasping movement. Importantly, in the same trials in which perceptual estimates were deceived by the illusion, the grasping apertures between the fingers were scaled to the real size differences between the two objects. Hence, the physical differences in size affected grasping apertures in one direction, while illusory differences in size affected perceptual judgments in the opposite direction, demonstrating double dissociation between these two visual functions.

Importantly, however, these functional dissociations have typically been described in the context of the mature brain; their developmental trajectory is less clear. It has been argued that neither perception nor action qualifies as an ontogenetically privileged system, as both develop from birth as a function of intrinsic processing constraints and experience (Bertenthal, 1996). Studies directly comparing the relative developmental rates of the two visual systems have inconsistent results. While some suggest earlier maturation of the functions mediated by the ventral pathway than those mediated by the dorsal pathway (Dannemiller, 2001), other studies suggested otherwise (Ciesielski et al., 2019; Kovács, 2000). In addition, the extent to which the visual processing mediating perception and action is coordinated during development is not clear. Although newborns seem capable of performing many actions regulated by perceptual information (Bloch & Carchon, 1992; Kremenitzer et al., 1979), interactions between perception and action become better tuned as a function of neural development and experience (DeLoache et al., 2004; Nardini et al., 2008).
Running title: Perception-action dissociation in children

Only few studies directly investigated the developmental stage at which the dissociation between the two systems becomes adult-like. Qualitative differences in computations carried out for perception and on-line action have been observed in children as young as five (Hadad et al., 2012). In Hadad et al.’s study, the children’s pattern of results resembled that of adults, showing that while variability of perceptual estimates increased as a function of object size, variability of grasping did not scale with object size. However, this violation of Weber’s law in grasping in young children was observed for simple objects for which the perceived magnitude is based on a single dimension (i.e., diameter of a disk), not for more complex objects for which the perceived magnitude is modulated by the relations between two different dimensions (i.e., width and length of a rectangle) (Freud et al., 2019). Notably, for adults, grasping violated Weber’s law, even for the complex objects. These results suggest that although the two visual pathways become increasingly specialized in their ability to compute different aspects of the visual environment, such computations may overlap to a larger extent during development.

The differential effects of visual illusions on perception and action in children are yet to be determined. There is ample evidence that perception is less susceptible to visual illusions during early childhood. However, this reduced susceptibility is not an all or nothing phenomenon (Hadad, 2018). For example, while four-year-old children are affected (even if to a lesser degree) by illusions such as the Ebbinghaus (Doherty et al., 2010; Kaldy & Kovacs, 2003) or the Ponzo illusions (Hadad, 2018; Leibowitz & Judisch, 1967), they do not exhibit susceptibility to other illusions such as the rectangle and 3D-cube illusions (Hadad, 2018).

To date, studies that used visual illusions to investigate the developmental trajectory of the relation between perception and action focused on the effect of the Ebbinghaus illusion. These studies yielded inconsistent results. In particular, it was found that both perception and action are influenced by the illusion in children (Duemmler et al., 2008; Hanisch et al., 2001). However, there is disagreement as to the nature of the effect: while Hanisch et al. (2001) demonstrate opposite directions of illusory effects on perception and action, Duemmler et al. (2008) found effects in the
Running title: Perception-action dissociation in children
same directions in children. Notably, in both studies participants grasped an inner target surrounded
by a set of small or large objects. Grasping the central target may be restricted by the contextual
objects surrounding the target and may thus be modulated by adaptations to the spatial
arrangements of the stimulus configuration. Therefore, grasping responses in such a case do not
necessarily reflect illusory effects.

To overcome these drawbacks, we tested the specialization of the two visual systems using
the Ponzo illusion for which visual computations for perception are shown to exhibit susceptibility
(albeit to a reduced manner) during early childhood (Hadad, 2018; Leibowitz & Judisch, 1967).
Sensitivity to the size of objects positioned on a background containing texture gradient and linear
perspective, giving rise to the Ponzo illusion, was measured in the participants’ grasping responses.
Grasping responses immediately followed the participants’ perceptual decision on the difference
between the objects’ sizes. This paradigm allowed a direct comparison of the sensitivity of grasping
and perceptual estimations to real and illusory size differences within the same experimental design.
Therefore, it offered a clearer definition of the developmental trajectory of the specialization of the
visual systems mediating perception and action.

Methods

Participants

Sample size for each group was based on previous studies comparing visuomotor and
perceptual behaviors in children and adults (Freud et al., 2019; Ganel, Tanzer, et al., 2008; Hadad et
al., 2012). Grasping data were analyzed for 17 children (ages: 5.5-8.5 years; mean age: 6.44; SD:
0.89; 10 females) and 18 adults (ages: 18-33 years; mean: 20.1; SD: 3.65; 13 females). The data for
three children were excluded because the participants did not exhibit sensitivity to object size at the
end point of the grasping. The data for one adult participant and three children were excluded
because there were not enough incorrect trials (five trials or less) on at least one of the experimental
conditions. Perceptual (estimation) data were analyzed for 17 children (ages: 5.5-8.7 years; mean
Running title: Perception-action dissociation in children

age: 7.37; SD: 1.07; 10 females) and 16 adults (ages: 18-33 years; mean: 20.4; SD: 3.11; 11 females).

All participants were right-handed with normal or corrected-to-normal visual acuity. Adults were tested at York University and provided informed consent and received course credit for their participation. Children were recruited from the community (City of Haifa) and informed consent was provided by their legal guardians. The same setup (i.e., cameras, markers, and stimuli) was used in both testing sites. All experimental procedures complied with the protocol approved by York University Internal Review Board and the Ethical Committee of the Faculty of Education, University of Haifa.

Apparatus and Stimuli

Participants sat in front of a table on which the target objects were presented at a viewing distance of approximately 40 cm. Two out of three objects were presented in each trial. For the critical incongruent trials (32 out of 40), the length of the larger object was 42 mm and the length of the smaller object was 40 mm. These objects were placed on a linear perspective background giving rise to the Ponzo illusion (see Figure 1A), such that the smaller object was perceived as spatially distant and thus was perceptually enlarged, compared to the physically bigger, “closer” object. The illusionary background was flipped every 10 trials to balance right and left movements directed to the bigger and smaller objects. Eight congruent trials in which a 47mm object was presented in the “close” location were used as “catch” trials. Given the large difference between the physical length of the objects (40 and 47mm), participants were expected to perceive the physically long object as bigger, despite the illusory background. The kinematic data from the catch trials were not analyzed, given the small number of trials in this condition.

Motion capture utilized an Optitrack system (Natural Point DBA OptiTrack, USA), with four 13W prime cameras to track the 3D position of three active infra-red-light emitting diodes attached to the participant’s index finger, thumb, and wrist (Figure 1B). Markers were placed in such a way as to allow complete and unrestricted movements of the hand and fingers. The apparatus
Running title: Perception-action dissociation in children

used a 100 Hz sampling rate. During the grasping task, grip aperture was computed as the distance between index and thumb. Perceptual estimation data were collected using in-house software installed on a Samsung Galaxy Tab tablet (screen size 8 inches).

Figure 1 - Experimental setup. The figure illustrates the arrangement of the objects in critical incongruent trials pitting the physical and the illusory size against each other (A). In this example, object 1 is typically perceived as shorter than object 2, although it is actually longer. Marker setup (B). Motion capture was based on the Optitrack system. Three infra-red markers were attached separately to each participant’s index finger, thumb, and wrist with small pieces of surgical tape. The picture was taken and published with permission.

Procedure

Following a short practice and equipment-calibration block, 40 experimental trials were completed. For each of the two tasks (grasping / perceptual estimation), a single trial was composed of two parts. First, participants performed a two-alternative forced-choice task, in which a verbal command (“Big” or “Small”) was presented and they were asked to differentiate objects’ size.

Then, in the grasping task, participants grasped the object, based on their forced-choice perceptual decision, using the thumb and index finger; and in the perceptual estimation task, they matched the size of the chosen object on a tablet. The initial size of the on-screen object randomly ranged between 38 and 43.25mm, and each button press added or omitted 0.15mm to/from object length.

Data analysis

For both tasks, accuracy was calculated based on the forced-choice task completed in the first part of each trial. For the grasping experiment, the 3D trajectories of the index finger and thumb were analyzed manually (on a trial-by-trial basis) using MATLAB (MathWorks, MA, USA)
Running title: Perception-action dissociation in children

based on the following parameters. Movement onset was set as the point in time when the aperture between the index finger and the thumb increased sharply for five successive frames. Movement offset was set as the point in time when the location of the index finger (Z coordinate) was at a minimum, and the gap between the fingers was stable for five successive frames. The maximum grip aperture (MGA) was automatically extracted for each trial by measuring the largest distance between the index finger and the thumb. For the estimation task, the final size of the object presented on the tablet was recorded.

Statistical analysis

Statistical analyses were conducted using JASP (JASP team, 2018). We employed analysis of variance (ANOVA) and Bayesian ANOVA on the grasping and estimation data. For all Bayesian analyses, we used the null model as the reference model, and priors were set as equal across all experimental conditions. Notably, in contrast to the null-hypothesis significance testing, the Bayesian approach allowed us to look for supportive evidence for either H1 or H0 (van den Bergh et al., 2019; Wagenmakers et al., 2018).

Results

Accuracy rates

First, we analyzed the accuracy rates of the participants’ forced-choice perceptual decisions. Consistent with previous studies (Ganel, Tanzer, et al., 2008), adults exhibited low accuracy rates (~20%), reflecting the robustness of the Ponzo illusion, and this was true for both the grasping and the estimation tasks (Figure 2). Children’s accuracy rates were robustly higher (~ 50%) than adults, and this was evident across the two experiments.

Consistent with these observations, an ANOVA with accuracy as the dependent variable revealed a significant effect of age [$F_{(1,64)} = 43.9, p<.001, \eta^2_p = 0.4$], with no effect of task and no interaction between task and age [$Fs < 1$]. These results were corroborated by a Bayesian ANOVA that revealed decisive support for the effect of age [$BF_{10} =1.780e+6$]. We also found evidence of the
Running title: Perception-action dissociation in children

Lack of task effect (perception/action) \[BF_{10} = 0.263\] and the lack of interaction between the two factors \[BF_{10} = 0.47\]. The results demonstrate susceptibility to the illusion in all ages but point to a significant difference between children and adults. These age-related changes have been observed in previous perceptual tasks (Hadad, 2018; Leibowitz & Judisch, 1967). We discuss these developmental changes below in the context of the grasping and perceptual estimation tasks.

Figure 2. Accuracy results. Both children and adults exhibited clear susceptibility to the Ponzo illusion, although children were overall more accurate. Error bars represent the standard error of the mean for each condition.

Dissociation of action and perception in children and adults

To examine age-related changes in the degree of the dissociation between action and perception, we included age, task, and size as independent variables. Critically, the two-way interaction between task (Grasping / Estimation) and size (Small / Big) was significant \[F_{(1,64)} = 45.15, p<.001, \eta^2 = 0.41\], reflecting differential sensitivity to size for the two tasks. The three-way interaction was not significant \[F<1\], suggesting children and adults exhibited a similar dissociation. Notably, the results of a Bayesian ANOVA examining the probability of a three-way interaction supported the null hypothesis (i.e., no three-way interaction) \[BF_{10} = 0.37\], such that models that did not include the three-way interaction were 2.69 times more likely to occur.

A separate analysis conducted for each group (children / adults) revealed a two-way interaction between task and size in each age group [Adults: \(F_{(1,32)} = 20.4, p<.001, \eta^2 = 0.38\); Children: \(F_{(1,32)} = 24.8, p<.001, \eta^2 = 0.43\)], indicating a dissociation between the sensitivity of
Running title: Perception-action dissociation in children
perception and action to size in both children and adults. For the children’s group, the interactive
effect of task and size demonstrating a dissociation held when we included age as a covariate [F(1,32)
= 22.42, p<.001, ηp² = 0.42], and also when the analysis of the children’s group was restricted to
the younger participants (younger than seven) [F(1,20) = 21.757, p<.001, ηp² = 0.52] An additional
Bayesian ANOVA provided decisive evidence of a two-way interaction across the groups
[Adults:BF₁₀=174.829; Children: BF₁₀ =557.8]. In the following sections, we analyze the tasks
separately to provide a more comprehensive description of the nature of the dissociation in each
group.

Grasping task

Maximum grip apertures (MGAs) were utilized to estimate the sensitivity of vision-for-
action to the physical size of the objects under the illusory influence. First, we analyzed sensitivity
to real size within the children’s group. Importantly, as this group had a relatively high accuracy
rate, we were able to analyze sensitivity to size across trials where the forced-choice perceptual
decisions were either correct or incorrect. As depicted in Figure 3, sensitivity to size was found
regardless of the correctness of the decision. Accordingly, a repeated measure ANOVA revealed a
main effect of size [F(1,16) = 12.11, p<.005, ηp² = 0.43], with no effect for correctness and no
interaction between correctness and size (both Fs < 1). This effect of size held when the children’s
age was added as a covariate to the model [F(1,16) = 10.05, p<.01, ηp² = 0.4]. An additional repeated
measure Bayesian ANOVA found substantial support for an effect of size on the grasping aperture
[BF₁₀ =6.83], such that the model including the effect of size was 6.83 times more likely to occur
than the null model. In addition, we found substantial evidence against the effect of correctness
[BF₁₀ =0.24] and against an interaction between correctness and size [BF₁₀ =0.47]. Our findings of
the sensitivity of children to object size, irrespective of their perceptual decision, provides the first
direct evidence of the resilience of grasping behaviors to the Ponzo illusion.
Next, we examined whether children were similar to adults in their sensitivity to object size. Given the low accuracy rates in the adult group, this analysis was restricted to incorrect trials (i.e., trials in which the forced-task perceptual decision was deceived by the illusion). Consistent with previous studies (Ganel et al., 2008), adults’ MGAs exhibited sensitivity to the real size of the objects, even though their perceptual decisions were incorrect for the same trials (Figure 3). Similar sensitivity to real size was observed for the children’s group, with children’s MGAs reflecting the direction of the real size differences between the objects.

A repeated measure ANOVA with MGA as the dependent variable and group (Children, Adults) and size (Small, Big) as the independent variables revealed a main effect of size \([F_{(1,16)} = 7.397, \ p<.05, \ \eta_p^2 = 0.18]\), reflecting the sensitivity of both groups to object size regardless of their perceptual decisions. We found an additional main effect of group, reflecting the expected overall greater grasping aperture in the adults’ group \([F_{(1,16)} = 6.01, \ p<.05, \ \eta_p^2 = 0.15]\). Importantly, however, no interaction was found between group and size \([F<1]\), suggesting sensitivity to real size was not modulated by age.

A Bayesian repeated measure ANOVA revealed substantial support for a combination of two main effects of size and group \([BF_{10} =12.51]\), with a bigger aperture for adults than children, alongside sensitivity to object size. This model was found to be 12.51 times more likely to occur than the null model. Notably, the isolated effect of size was substantiated \([BF_{10} =4.51]\). Finally, there was substantial evidence of a lack of interaction between size and group \([BF_{10} =0.26]\), supporting the null hypothesis, according to which size sensitivity is not modulated by age.
Figure 3. Grasping experiment results. Size sensitivity was measured at the point in time when MGA occurred by comparing the grasping apertures for big and small objects. Children and adults were sensitive to the real size differences between the objects even in trials in which their perceptual decisions were deceived by the illusion. For adults, only trials in which erroneous decisions were made are included. Error bars in Figures 3 and 4 represent confidence intervals for the main effect of object size as calculated by repeated measures ANOVAs (Jarmasz & Hollands, 2009)

Estimation task

We examined performance in the vision-for-perception task by analyzing the perceptual estimates of the objects. In contrast to our findings for grasping, in the children’s group, we found a striking difference between correct and incorrect trials. In particular, size estimations mirrored the forced-choice perceptual decision, with robust sensitivity to size in the correct trials, while a reversed pattern of results reflected a significant illusory effect in the incorrect trials (Figure 4). A repeated measures ANOVA with perceptual estimation as the dependent variable and size (Small, Big) and correctness (Correct, Incorrect) as the independent variables revealed a main effect of correctness [F(1,16) = 9.86, p<.01, ηp^2 = 0.38] qualified by size [F(1,16) = 42.8, p<.001, ηp^2 = 0.72]. This effect held when the children’s age was added as a covariate to the model [F(1,16) = 20.09, p<.001, ηp^2 = 0.57]. This was supported by a Bayesian repeated measures ANOVA providing
substantial evidence against isolated main effects [size: $\text{BF}_{10} = 0.26$; correctness: $\text{BF}_{10} = 0.36$] and decisive evidence of an interaction between the two factors [$\text{BF}_{10} = 5.186 \times 10^9$].

Next, we compared the children’s and adults’ groups based on the incorrect trials alone. As depicted in Figure 4, both groups showed a pattern of reversed size sensitivity, with the small objects illusively perceived as bigger than the physically bigger objects. The ANOVA revealed a robust effect for illusory size [$F_{(1,31)} = 44.08$, $p < .001$, $\eta^2_p = 0.58$] with no interaction with group or a general difference between age groups [$Fs < 1$]. A Bayesian repeated measure ANOVA with perceptual estimations as the dependent variable and group (Children, Adults) and size (Small, Big) as independent variables revealed decisive evidence of the illusory effect of size [$\text{BF}_{10} = 111003$]. Importantly, there was anecdotal support for the lack of interaction between size and group [$\text{BF}_{10} = 0.454$].

When taken together with the results of the grasping experiment, the perceptual estimation data provide robust evidence of the sensitivity of vision-for-perception to visual illusions in childhood and adulthood. The children’s data are of particular interest, given the reversed pattern observed for correct and incorrect trials. These data strongly suggest that the higher accuracy rates of children could not be attributed to their misunderstanding of task instructions or to their shorter span of attention. We elaborate on this issue in the Discussion.
Figure 4. Estimation experiment results. Size sensitivity was measured using a touchscreen app for big and small objects. Children were “sensitive” to size only when their perceptual decisions were in line with the actual size differences between the objects. In trials in which erroneous decisions were made, the small object was estimated as bigger than the physically bigger object. For adults, only trials in which erroneous decisions were made were included in the analysis.

Discussion

The study was designed to tap age-related changes in the functional dissociation between perception and action during childhood. To this end, we measured whether sensitivity to physical size differences between objects was modulated by the Ponzo illusion for visuomotor control and perceptual estimations in a group of adults and in children aged five to eight years.

The results of the grasping task showed that children retained intact sensitivity to the physical size differences between objects, both in trials in which they were deceived by the visual illusion, but also in trials in which their perceptual decisions were correct. In contrast, children’s perceptual estimations in incorrect trials reflected the illusory effect rather than the physical size differences between the objects. These results replicate and extend the pattern of behavior observed in adults in this study and in a previous study that used a similar design (Ganel, Tanzer, et al., 2015).
Running title: Perception-action dissociation in children

2008), providing additional evidence of a double dissociation between perception and action in the context of illusory and real size. The similar pattern of results in the children’s group suggests the functional dissociation of perception and action emerges, at least partially, during early childhood. This result is consistent with previous studies providing evidence of dissociation as early as five years of age (Hadad et al., 2012). Our results extend this research to demonstrate the early emergence of the specialization of the two visual functions in computing objects’ size. Already at five years of age, visual representations for action are immune to contextual visual information, while those mediating the perception of objects are heavily affected by contextual information.

However, despite the apparently mature dissociation of action and perception in children, there are some indications, both in our data and in previous studies, of age-related changes in the pattern of the dissociation. In particular, perception and action have been shown to dissociate in their adherence to Weber’s law in children as young as five (Hadad et al., 2012); however, when more complex stimuli are presented, children’s grasping trajectories adheres to Weber’s law, in clear contrast to adults (Freud et al., 2019). This suggests that the representations mediating online grasping may become more refined and more sensitive to the absolute metrics of objects during childhood. The current data further suggest that the representations mediating perceptual processing may be refined with age and become more sensitive to contextual information. Altogether, the results suggest that although the two visual pathways are already specialized in early childhood at computing different aspects of the environment, the computations that mediate perception and action may overlap more closely in childhood. The refinement of this specialization may therefore take more than five years to become adult-like.

Reduced susceptibility to visual illusions during childhood

Previous research have shown that children are less susceptible to visual illusions compared with adults (Hadad, 2018; Happé, 1999; Kaldy & Kovacs, 2003). It was recently suggested that this reduced susceptibility is not an all or nothing phenomenon (Hadad, 2018). Consistent with this
running title: perception-action dissociation in children

Conclusion, we found that children were affected by the Ponzo illusion, however they were less susceptible to the illusion compared with adults. In particular, children were remarkably more accurate in deciding which object was smaller/bigger than adults (~50% vs ~20%), and this pattern of results was consistent across the different groups of participants completing the grasping and manual estimation tasks.

Importantly, however, in the current study we evaluated perceptual performance based on the forced choice task (a dichotomic measure) but also based on perceptual estimation (a continuous measure, more equivalent to the grasping task). A closer inspection on this later measure, reveals an interesting pattern. In particular, we found that in trials in which children were affected by the illusion (i.e., incorrect decisions), the effect of the illusion was similar in magnitude to that observed in adults. These findings suggest the nature of the task (adjustment vs. forced choice) might modulate the observed sensitivity to visual illusions during childhood and more broadly point to the need to control for task difficulty level, the types of processing involved, and the type of the task in future attempts to probe the developmental trajectory of susceptibility to illusions.

Finally, the accuracy scores of ~50% for the 2AFC task of the children groups raise concerns that the children may have had difficulties understanding or remaining on task. However, the data in the perceptual estimation task weakens such an alternative explanation. In particular, as described above, children’s perceptual adjustments of perceived size closely matched their forced-choice perceptual decisions. This consistency suggests the observed age-related changes reflected developmental changes in the susceptibility to illusions rather than other, less relevant aspects of behavior.

The susceptibility of the perceptual system to contextual illusions has been shown to be modulated by age; however, the developmental trend of the susceptibility to illusions also depends on the specific nature of the contextual illusion. In the case of the Ebbinghaus illusion, for example, developmental studies have had inconsistent results. Some have found seven- to eight-year-olds (Happé, 1999), and even children as young as five, are deceived by the illusion to the same extent
Running title: Perception-action dissociation in children as adults (Duemmler et al., 2008; Hadad, 2018; Hanisch et al., 2001). Others suggest the effect of the illusion might be weaker in children (Kaldy & Kovacs, 2003; Weintraub, 1979; Zanuttini, 1996) or even absent in children younger than seven (Doherty et al., 2010). Still others have found varying age trends for different components of the same illusion configuration (Porac & Coren, 1981). The mixed pattern of results might be related to variations in the spatial arrangements of the stimulus configurations. The spatial distances between the elements composing the Ebbinghaus display varied across the different studies. As the spatial inter-relations of elements composing a scene are particularly critical for spatial integration skills in young children (Hadad & Kimchi, 2018), this uncontrolled parameter across studies may account for the inconsistencies.

Limitations

The study provides important insights into the development of a functional dissociation between perception and action. However, several limitations should be noted and perhaps addressed in future experiments.

First, we included data from children as young as 5.5 years old. Importantly, by this age, visuomotor control is already developed, and children are engaged in various fine-grained visuomotor tasks, such as tool-use, writing, and manipulating small objects (e.g., blocks, toys, food) in their surroundings. Hence, future studies could probe the functional dissociation in younger children by adopting different experimental approaches to characterize visuomotor behavior. It is possible, for example, that our setup of kinematic data collection (i.e., active markers attached to the fingers) might not be suitable for younger ages (for a suitable task, see Street et al., 2011). Note, however, that the data providing evidence of the perception-action dissociation in our age group are highly informative, as previous studies suggest the dissociation between action and perception is not entirely mature in five- to seven-year-old children (Doherty et al., 2010).

An additional limitation was the between-subjects design. In particular, in many previous studies with adult populations, the same participants completed both perceptual and visuomotor
Running title: Perception-action dissociation in children tasks (Franz et al., 2009; Ganel, Chajut, et al., 2008; Ganel, Tanzer, et al., 2008). For practical reasons (i.e., keeping session duration as short as possible to allow children to complete the experiment without losing attention), we obtained data on perceptual and visuomotor tasks separately. This prevented us from looking at potential correlations between perceptual and visuomotor abilities.

Conclusions

Our goal was to explore the nature of the double dissociation between perception and action during childhood. We found that similarly to adults, children’s grasping behavior can resist the effect of the Ponzo illusion, while their perceptual estimations are deceived by the illusion. These results suggest that the functional dissociation between perception and action emerges relatively early in life.
Running title: Perception-action dissociation in children

References

JASP team. (2018). *JASP* (Version 0.9) [Computer software].

Running title: Perception-action dissociation in children
Running title: Perception-action dissociation in children
